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Abstract—In this paper we propose a method for the online
adaptation of a humanoid robot’s arm kinematics, using its
visual and proprioceptive sensors. A typical reaching movement
starts with a ballistic open-loop phase to bring the hand to the
vicinity of the object. During this phase, as soon as the hand of
the robot enters the field of view of one of its cameras, a vision
based 3D hand pose estimation method feeds a particle filter that
gradually adjusts the arm kinematics’ parameters. Our method
makes use of a 3D CAD model of the robot hand (geometry
and texture) whose predicted position in the image is compared
at each time step with the cameras’ incoming information.
When the hand gets close to the object, the kinematic errors
have reduced significantly and a better control of grasping can
eventually be achieved. We have tested the method both in
simulation and with the real robot and verify error decreases
by a factor of 3 during a typical reaching time span.

Index Terms—Online adaptation, internal model learning, 3D
model based tracking, reaching, humanoid robot.

I. INTRODUCTION

Humans acquire body awareness through a process of
sensorimotor development that starts in early infancy [1],
or most likely in the womb already [2]. Such awareness is
supported by a neural representation of the body that can be
used to infer the limbs’ position in space and guide motor
behaviors: a body schema [3].

Considering more specifically the visual based control of
reaching, a form of visual-proprioceptive calibration of the
body might be performed by infants during the first months
of life, as they spend a lot of time observing themselves
while moving [4]. Until four months reaching movements
seem to be just “ballistic”, thus exploiting no visual feedback,
as trajectory correction is absent [5], [6]. Then, from five
months, vision is used to correct the hand position and
orientation during the movement [7], with performance that
improves during development [8]; however, after nine months
this visual guidance almost disappears, as children become
able to plan a proper hand trajectory at the movement onset
[9]. Bushnell claims that this decline of visually guided
reaching is fundamental for the further cognitive development
of the child, as it frees a big portion of visual attention that
can be thus devoted to perceive and learn other aspects of
the experienced situations [5]. In addition, these observations
suggest that an internal model might have been learned
through sensorimotor experience during the first months, and
later exploited to improve the control. Indeed, a more general
theory of human motor learning and control postulates that

Fig. 1: The iCub humanoid robot performing a reaching task.

forward and inverse internal models of the limbs are learned
and kept up-to-date in the cerebellum [10]. While inverse
models are used to compute the muscle activations required to
perform a desired movement, forward models can be used to
simulate motor behaviors and to predict the sensori outcomes
of specific movements [11]. These predictions are exploited
in different ways: for example, they are combined with
the actual sensory feedback through Bayesian integration to
improve the estimation of the current state of the system [12].

Clearly, endowing artificial agents with similar capabilities
is a major challenge for cognitive developmental robotics.

From a wider perspective, having an accurate and robust
model of the controlled system is fundamental for any robotic
application. In case of complex robots (e.g. humanoids) it is
typically very difficult to obtain an accurate analytical model
of the system, due to hard-to-model aspects (e.g. elasticity)
and changes that might occur over time (e.g. unalignment of a
joint rotation axis); therefore, learning from data is becoming
a more and more popular approach to equip robots with the
necessary adaptation capabilities (see [13], [14] for recent
surveys).

Our objective in this paper is to improve the accuracy of
an analytical model of the robot using visual information and
Bayesian estimation techniques. In particular, we consider
a visual based reaching scenario using the iCub humanoid
robot [15], depicted in Figure 1. Instead of learning an
internal model from scratch, we exploit the iKin kinematic
model of the robot [16] provided within the YARP/iCub
software framework, and we adapt it online during reaching
movements in order to cope with the modeling inaccuracies,
allowing the robot to precisely reach for a desired position
and orientation.

Our solution draws some inspiration from human devel-



opment and learning, as: i) the internal model is updated
online based on the visual feedback of the hand (something
that infants supposedly do between four and eight months),
and ii) the estimation of the hand pose results from the
Bayesian integration of the sensory (visual) feedback and the
prediction made by the internal model (a strategy that seems
to characterize human perception as well [12]).

The rest of the paper is organized as follows. In Section
II we report the related work in robotics and we highlight
our contribution more specifically. Then in Section III we
formalize the problem and we describe our robotic platform,
while in Section IV we provide the details of our proposed
solution. Finally, in Section V we present the experimental
results, and in Section VI we draw our conclusions and sketch
future work.

II. RELATED WORK

One of the key components of our approach relies on the
detection and tracking of the robot hand and its comparison
with predictions formed by the current internal model. Sev-
eral approaches have been proposed to track human hands
with visual information [17]. The problem is very complex
due to the large number of degrees of freedom of a human
hand. In [18] it is proposed an approach to track and estimate
the 26-DOF of a human hand model. It combines skin color
segmentation and edge maps to evaluate hypotheses that
are optimized with Particle Swarm Optimization methods.
The method is computationally expensive but with custom
GPU implementations, quasi-real time performance can be
achieved. To simplify the matching problem [19] proposes
the user to wear colored gloves and develops a method
based on efficient search of a database of examples. The
previous methods attempt to estimate the pose of the hand
in an arbitrary configuration. In our case, using the model
of the robot hand and forward kinematics, we have a good
approximation of the hand pose and appearance, so the
problem is more constrained and we can rely on local search
techniques. In [20] an algorithm was proposed for estimating
the pose of a human hand with a specific gesture. Because the
hand posture is known, the problem reduces to a 6D search,
which is further reduced to 3D search on an orientation
database, since translation can be computed analytically using
image moments. Our observation model is similar to that
one, but we use it in a particle filtering framework to update
the robot’s internal kinematics model. A few recent works
investigated visual detection of a robotic hand using machine
learning techniques [21], [22]. Both systems are marker-
free and model-free, and they employ either Online Multiple
Instance Learning [21] or Cartesian Genetic Programming
[22] to learn from visual examples how to detect the robot
hand inside an image. In [21] information coming from
arm motor encoders and visual optic flow is integrated to
autonomously label the training images, thus obtaining an
unsupervised learning system. However, both solutions deal
only with the hand position in the image, and not its 6D
pose in task space. Different solutions have been proposed for

the automatic calibration of the eye-head-arm-hand kinematic
chain, that can allow accurate visual based reaching (some of
them are reviewed in [13]). In [23], a upper humanoid torso
is calibrated, including the sensor relative pose and the angle
offsets and elasticity parameters of the kinematic chain. The
method requires special markers in the wrist of the robot and
operates offline with non-linear least squares optimization of
data acquired during 5 minutes of robot specific movements.
Online learning and adaptation of the kinematic model has
been proposed as well [24], [25], but still using markers to
visually detect the hand. Marker-free arm tracking has been
investigated in [26], where RGB-D data from commercial
depth sensors is used to correct the robot kinematics.

A. Our contribution

In terms of visual estimation of the hand pose, our
approach is to combine information coming from different
channels in a Bayesian way: vision, proprioception, a model
of the hand appearance, an internal model of the robot
kinematics. Concerning the robot calibration, our objective
is to exploit the visual estimation of the hand pose to
incrementally correct the kinematic model of the robot during
the movements. For this purpose, we develop a particle filter
to track the hand based on likelihood metric that compares
a prediction of the visual observation of the robot hand
according to the current internal model, with the real images
acquired by the RGB cameras in the eyes of our platform,
the iCub robot.

III. PROBLEM STATEMENT

A. The robotic platform

The iCub (see Figure 1) is a humanoid robot for research
in embodied cognition, developed in the context of the EU
project RobotCub (from 2005 to 2010) and subsequently
adopted by more than 25 laboratories worldwide. It has 53
motors that move the head, arms and hands, waist, and legs;
it has the average dimensions of a 3 years old child. It
is equipped with stereo vision (cameras in the eyeballs),
proprioception (motor encoders), touch (artificial skin and
tactile fingertips) and vestibular sensing (IMU on top of
the head). The robot is equipped with a dynamic simulator
[27] that has been used to generate the predictions of the
observations that are compared to the real images acquired
by the cameras.

B. Joints measurements

The online adaptation of the internal model consists in
estimating joint offsets to the angles of the arm joints. The
angular position of a joint is modeled by:

θ = θr + β + η (1)

where θ is the value read by the encoders, θr the real value
of the joint position, β is a systematic offset, and η a zero
mean Gaussian noise with covariance Q, η ∼ N(0,Q). This
paper proposes to estimate β from visual feedback of the
robot images, assuming negligible mechanical errors in the



rotation axes alignment and link lengths. Also, we assume
joint errors to be independent, meaning that the covariance
matrix Q is diagonal. The iCub arm has 7 rotation joints
each with a single degree of freedom. Our encoder readings
(θ) are the seven joints of each arm. Three rotation joints in
the shoulder, two in the elbow and two in the wrist defining:
θ = [θ0...θ6].

C. State Model

The offsets in Equation (1) define the state vector of an
unobserved Markov process as x = [β0 β1 β2 β3 β4 β5 β6]T

where βi is the offset in joint i of one arm. We assume
an initial distribution p(x0) and a known state transition
distribution p(xt+1|xt). To allow for small changes in x we
introduce a state transition noise w and model the system
state transition model as:

xt+1 = xt + w (2)

Here w ∼ N(0,K) is a zero mean Gaussian noise with
a given covariance K = σ2

sI7, where σs is the standard
deviation.

D. Observation Model

At each time we have two sources of information, the
encoder readings (θ) and the left and right camera images,
IL and IR, respectively. The observation vector will be a
concatenation of the values of the two images defined as
y = [IL IR] with a distribution of p(yt|xt,θt). We defined
belief as p(xt|y1:t,θ1:t), which is the distribution of the
state x, at time t, conditioned on all past observation and
encoder readings. Given a certain state vector xt and some
given encoder readings θt, we can form a prediction on
the observed images (ÎL and ÎR). Let [ÎLÎR] = f(θ,x) be
a function that receives an angular position of the joints,
here defined as the composition of θ and x, and creates
two images (ÎL and ÎR) of the corresponding visible pose
on the left and right eye, respectively. We implement this
function using an existing simulator that includes the forward
kinematics of iCub and an image generation model. Note
that f is highly nonlinear and two different sets of angles
can generate the same image, or images with imperceptible
differences. Redundancy in the joint angles may lead to
different states (x) with the same final pose. Therefore, the
estimated x will be just one set of offsets that can explain
our pose in the image.

To compute the image measurement probability
p(yt|xt,θt), we use the Hammoude metric [28] as a
distance metric between the predicted and the real images.
It is defined as:

dHMD(y1, y2) =
#(Ry1 ∪Ry2)−#(Ry1 ∩Ry2)

#(Ry1 ∪Ry2)
(3)

where Ry1 represents the region of predicted silhouette of
the hand and Ry2 is the region of the real silhouette. In the
simulated experiments this real silhouette is easy to obtain
and in the real case a single colored background is used to

(a) Position 1 (b) Position 2

Fig. 2: Value of the observation likelihood function as a func-
tion of the 7th joint angle, for two different arm configuration.
Note the different forms of the likelihood function for the two
configuration, actually multi-modal in the second case.

simplify this step. Since, the Hammoude distance has a range
between [0 1], the likelihood will be proportional to:

p(yt|xt,θt) ∝ 1− dHMD(yt, f(θ,x)) (4)

IV. OUR APPROACH

In our approach we will use a Particle Filter as defined
in [29]. The choice of a particle filter is justified due to the
non-linear observation model that leads to a multi-modal like-
lihood function (see Figure 2). To illustrate the multi-modal
nature of the likelihood function we chose two reference
positions and changed 0.1 degrees in joint 7 (wrist yaw).
We can see that, for the two different initial positions, we
get a different likelihood function with respect to the offsets
in the joint. In the second case the likelihood has a multi-
modal form. Under the Markov assumption we can compute
recursively the a posteriori distribution p(xt|y1:t,θ1:t) us-
ing the previous estimation p(xt−1|y1:t−1,θ1:t−1) and the
observation model p(yt|xt,θ1:t).

The particle filter has four stages: Prediction, Observation,
Update and Re-sampling. In our case, the prediction step
is quite simple due to the state transition equation ( See
Equation 2). In the observation stage we generate an image
for the state x and compute the likelihood of each particle
using the Hammoude distance. In the update stage, we use
the likelihood in the previous step to re-weight each of the
particles.

The re-sampling step is probably the most important stage
in the filter for its convergence. We use the systematic re-
sampling method [30] that ensures the particles with a weight
greater than 1/n to be always re-sampled, where n is the
number of particles used.

After resampling we spread the particles using a normal
distribution with zero mean and standard deviation σs, de-
fined in section III-C.

A. Computing the state estimate

Although the state is represented at each time step as
a distribution approximated by the particles, for evaluation
purposes we must compute our best guess of the value of
the state. For this purpose, we use a kernel density estimation



(KDE) to smooth the weight of the particles according to the
information of neighbor particles and choose the particle with
the highest weight (Wi) as our state estimate:

Wi = Li + α ∗KDEi; (5)

where Li is the particle likelihood, α is a smoothing param-
eter and KDEi is the influence of the neighbors:

KDE(x) =
1

n

n∑
i=0

Li ∗K(x− xi) (6)

where n is the number of particles of the filter, x − xi is
the distance (in offsets space) between the particle we are
smoothing x, and a neighbor xi. K is a kernel specifying
the influence of one particle in other based on their distance.
We use a Gaussian Kernel in our experiments:

K(x1,x2) =
1√

2π|Σ|
e[− 1

2 (x1−x2)T Σ−1(x1−x2)] (7)

where Σ is the co-variance matrix and |Σ| its determinant.
We assume the joints are independent of each other, so

Σ will be a diagonal matrix Σ = σ2
KDEI7, where σKDE

is the standard deviation in each joint, which we assume to
be equal.This parameter defines if two particles are close or
not. If we have a higher σKDE all particles will be “close”
to each other. On the other hand if we have a small σKDE

all particles will be “alone” in the world.

B. Error metrics

In order to evaluate the accuracy of our method we
compute both the position and orientation errors between the
real and estimated poses. The orientation error is defined as:

d(Rr, Re) =

√
‖logm(RT

r Re)‖2
2

180

π
[◦] (8)

where, Rr is the real rotation matrix from the eye frame to
the end-effector and Re is the estimated one. The principal
matrix logarithm, logm, implements the usual distance on
the group of rotations.

The position error between the two positions is computed
by euclidean distance, d(Pr, Pe): where Pr is the real po-
sition of the end-effector in the eye reference frame in 3D
Cartesian space and Pe is the estimated one.

V. RESULTS

In this chapter we will show the results of various exper-
iments. We have performed three types of tests. In the first
test we use a simulated robot with artificial offsets in the
arm joints and evaluate the convergence and accuracy of the
filter. We consider observations taken both from one single
camera and the stereo pair. In the second test we also use
a simulated robot but this time we introduce also artificial
offsets (calibration errors) in the head joints. Still, only the
arm offsets are estimated by the filter. The head offsets are
used to assess the robustness of the method to unmodelled

Mean Standard Deviation
Angular Error[◦] 4.5495 2.032

Position Error[mm] 3.3357 1.5163

TABLE I: Mean and Variance of the final orientation and po-
sition errors over 10 different experiments, for two cameras.

sources of uncertainty. Finally in the third experiment we use
the real robotic platform and estimate the offsets of the real
arm. Despite no ground truth being available, we compare
the predicted and real camera images to assess the level of
precision attained.

In all experiments we used a pre-defined shape for the
fingers. This posture correspond to a possible hand preshape,
that is usually used in grasping contexts. This shape can be
different, but for simplicity and comparison of the various
experiments we keep it constant. Also the filter parameters
are kept constant. We initiated the filter with a normal dis-
tribution p(x0) with zero mean and with standard deviation
σ0 for all the joints. The filter is composed by 200 particles,
which is not a typical value in particle filtering framework,
however it is an optimal value to balance real-time constraints
and accuracy of the estimation in our setup. The other design
parameters are α = 500, σKDE = 1.0 and σ0 = 5.0. To
spread the particles after resampling we use σs decaying over
time and with a lower bound. σs start in 3 degrees and decays
20% in every new iteration/frame with a lower limit of 0.10◦,
with this we achieve great precision with a reduced number
of particles.

A. First experiment - Offsets in Arm

In this experiment we use the simulated robot with artificial
offsets on every joint of the right arm chain. These offset are
the ground truth to evaluate the filter performance and have
the values: βi = [5, 4, 3− 2,+3,−7,+3].

While the robot hand is in the field of view of the cameras,
we iterate the particle filter to improve the state estimate. The
experiments use a reaching like trajectory of the arm as illus-
trated in Fig. 3. The hand goes from the right bottom to the
left top of the image. We perform 10 such experiments, with
different initial and final poses. To quantitatively evaluate
the accuracy of the filter we use the Cartesian position and
orientation errors (See Eq. 8). We do not compare the state
estimates directly with the ground truth joint offsets because
there are redundancies in the kinematics that may lead to
the estimation of offsets different from ground truth but that
correspond to the same Cartesian poses. We show in Fig. 4
the evolution of the position and orientation errors of the
hand base frame. The following observations can be made:
(i) both errors reduce their magnitude about 3× during the
trail; (ii) convergence is achieved in less than 100 frames; and
(iii) the orientation error is lower in the stereo case but the
position error does not change significantly with the addition
of the stereo information. The mean and standard deviation
of the errors for the 10 experiments are show in Table I for
the stereo case.



(a) frame 0 (b) frame 019 (c) frame 086 (d) frame 139 (e) frame 200

Fig. 3: Example of a reaching task used in the first experi-
ment.
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Fig. 4: Orientation and position error over frames/time per-
forming a reaching movement (Fig. 3) using one and two
cameras. We can see the improvement in the orientation error
with the use of two cameras

B. Second Experiment - Offsets in Arm and Head

For the second experiment we maintain the parameters of
the filter and the errors in the right arm, but we added some
errors in the head chain. The artificial offsets introduced in
the head were: -4◦in the neck pitch, 6◦in the roll, -2◦in
the yaw and -1◦in the eyes tilt. The executed trajectory is
illustrated in Fig. 5, where we can also observe the predicted
position of the fingertips (dots in red) during the convergence
of the filter. Notice that the position of the fingertips converge
to the real values during the reaching time span. In Fig. 6
we plot the numerical values of the orientation and position
errors along time, measured on the right eye reference frame.
Note that the achieved accuracy is almost the same as
when errors were only introduced in the arm chain (first
experiment).

C. Third Experiment - Real Robot

In this section we will show an estimation of the offsets
of the right arm with real data. The robot performed a set of
arbitrary movements before approaching the target pose. The

(a) frame 1 (b) frame 025 (c) frame 050

(d) frame 100 (e) frame 180 (f) frame 250

Fig. 5: Frames of 2nd Experiment - We have errors in right
Arm and Head chains. The estimated positions of the fingers
tips, in red, improved during the movement
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Fig. 6: Angular and Euclidean error over frames/time during
reaching movement (Fig. 5). Despite the errors in the head
we can estimate the pose of the hand and have almost the
same final errors.

temporal evolution of the offsets values are shown in Fig. 7.
We can observe that after about 100 frames, the estimate
reaches steady state. As mentioned previously, the accuracy
is better evaluated using the Cartesian error, but since in this
case ground truth is not available we measure the error in the
image plane. This can be observed in Fig. 8, where the hand
of the real robot and the predicted ones, with and without
filter, are shown side by side. It’s clear that the filtered pose
is closer to the real one. Quantitatively, we have measured
an average pixel difference between the fingertips of around
13 pixel with filtering and 25 pixel without, which at the
average distance of the hand (∼0.5m) corresponds more or
less to 2cm and 4cm, respectively.

VI. CONCLUSIONS AND FUTURE WORK

We presented a method to estimate the pose of a robotic
hand, based on a particle filter framework. We have shown
its convergence and the errors obtained during the motion.
We used the encoder readings and the cameras of the iCub to
compute a visual-proprioceptive calibration. In our simulated
experiments, the position error of the hand was always below
5mm, which is a good error for grasping purposes. The
orientation error was below 5◦which is a reasonable value
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Fig. 7: Offsets estimation of the Real Robot Right Arm. The
offsets converge to a value

(a) Without filter (b) With filter

Fig. 8: Estimation of the pose of the hand with the real
robot. a) the simulated hand wihtout correction; b) the output
estimation of our approach. Moreover, we see the similarities
between the real and the simulated hand

due to the errors present in each joint. In the real robot
experiment, the offsets converged and despite the geometrical
differences between the real robot and simulation, the error
decreases in image pixels by a factor of 2.

As future work we plan to close the feedback loop, trying
to do visual based hand control. The use of the Hammoude
distance can be improved as well, the goal will be to smooth
it using a distance transform method. We plan to implement
an improved hand segmentation method capable of coping
with more realistic and complex backgrounds.
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