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Abstract— Vision-based grasping for humanoid robots is a
challenging problem due to a multitude of factors. First,
humanoid robots use an “eye-to-hand” kinematics configuration
that, on the contrary to the more common “eye-in-hand”
configuration, demands a precise estimate of the position of the
robot’s hand. Second, humanoid robots have a long kinematic
chain from the eyes to the hands, prone to accumulate the
calibration errors of the kinematics model, which offsets the
measured hand-to-object relative pose from the real one. In
this paper, we propose a method able to solve these two
issues jointly. A robust pose estimation of the robot’s hand
is achieved via a 3D model-based stereo-vision algorithm, using
an edge-based distance transform metric and synthetically
generated images of a robot’s arm-hand internal computer-
graphics model (kinematics and appearance). Then, a particle-
based optimisation method adapts on-line the robot’s internal
model to match the real and the synthetically generated images,
effectively compensating the kinematics calibration errors. We
evaluate the proposed approach using a position-based visual-
servoing method on the iCub robot, showing the importance of
the continuous visual feedback in humanoid grasping tasks.

I. INTRODUCTION

Humanoid robots are raising great interest in the research
community. They are versatile platforms and can be used
in diverse application scenarios since the match with human
dimensions and degrees-of-freedom facilitates the operation
in human-made environments and with human-made objects
and tools. However, these robots have complex mechanical
structures and long kinematic chains (e.g. the iCub humanoid
robot [1] has 53 mechanical degrees-of-freedom – see Fig. 1)
which are difficult to model and calibrate in order to perform
even the most basic tasks with great accuracy. Precision
reaching and grasping are examples of challenging tasks due
to hard-to-model characteristics of the humanoid kinematic
chains (e.g elasticity), changes that occur due to environmen-
tal conditions (e.g. material dilation due to temperature), or
conditions related to the operation of the system, both in the
long term (e.g. joints drift and misalignment due to wear and
mechanical stress) and in the short term (e.g. bending due
to payload and gravity).

Indeed, the new emerging market targeting human-robot
interaction and robots with a large number of degrees-of-
freedom requires real-time on-line strategies to continuously
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Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
l.jamone@qmul.ac.uk

Fig. 1: The iCub humanoid robot performing a precise
grasping task by markerless visual servoing.

adapt to changes in the environment. Anyway, there are
always unknown factors that will be left out of the internal
model and will result in residual uncertainty on the hand-
to-object relative pose. If this uncertainty is higher that
the required precision in the manipulation, again failure is
imminent. Such residual uncertainties must be solved locally
using sensor feedback, for instance in a visual-servoing
framework [2]. Visual-servoing methods constantly measure
the relative pose between the robot’s end-effector and the
object of interest and control the robot’s arm to reduce this
error in a form that is robust to small calibration errors.

Surprisingly, very few humanoid robotics works employ
continuous visual feedback on the reaching and grasping
tasks [3]. Most works rely on an open-loop approach, where
the robot looks once to the scene, computes the relative pose
between the hand and the object, then drives the arm to
the object position without using visual feedback along the
process (refer to Sec. II for more details). This is probably
due to the difficulty in obtaining a reliable estimate of the
robot’s hand pose from visual measurements. In fact, the
most common applications of visual servo control exploit
the “eye-in-hand configuration”, where the camera is rigidly
attached to the end-effector, so visual perception of the end-
effector pose is not required. However, humanoid robots have
cameras in the head (“eye-to-hand” configuration), thus the
computation of the relative pose between end-effector and
objects requires visual perception of the hand. Although
some works try to address this problem using special markers
in the end-effector to facilitate pose measurements, this
approach is not practical in small multi-fingered hands due
to the difficulty in affixing the markers. Furthermore, small
markers still carry significant uncertainties in rotation.



In this work, we propose a simultaneous visual-servoing
and markerless on-line calibration system for reaching and
grasping tasks on the iCub robot. The system builds on two
key elements developed in our previous work: (i) a real-time
3D markerless model-based stereo-vision pose estimation
of the robot’s hand [4], and (ii) a robust particle based-
optimisation method that continuously estimates the robot’s
calibration errors modelled as joints offsets [5]. In the current
work, we have developed a position-based “eye-to-hand”
visual servoing method based on the previous components
and show, for the first time, an automated grasping system
with continuous visual feedback operating in the iCub robot.

II. RELATED WORK

Real-time reaching/grasping tasks in robots are performed,
normally, without any feedback control approach [6], [7], [8],
[9], [10], mainly to speed-up the reaching process. According
to [3], very few methods of grasping take advantage of vision
to correct robotic hand poses. In [6] open-loop grasping
of kitchenware objects is performed; however, some experi-
ments failed due to undesired “contact between the hand and
the object”, which could be mitigated with a visual-control
approach. Kim et al. [7] propose to catch objects in flight
exploiting the inverse kinematics of a robotic arm, achieving
satisfactory results. Although the iCub robot is used for the
simulations, the real world experiments are performed with a
Kuka industrial arm, whose analytical model is very reliable;
arguably, it would have been very challenging to reproduce
similar results with the iCub robot, whose kinematic chain
is more difficult to model accurately. Also, Leidner et al
[9], [10] resort to a precise robotic platform to perform
feed-forward control; however, the authors state that their
work should be extended to integrate feedback-loop based
on visual perception.

Visual servoing is a feedback closed-loop control strategy
based on visual data [2]. Most of the visual servoing method-
ologies are based on eye-in-hand control, where the cameras
are attached to the robot hand and local visual features ex-
tracted from the object are used to drive the arm motion (e.g
the works [11], [12], [13]). One limitation of this strategy is
that only a partial view of the scene is available (i.e. the part
in front of the hand), and therefore the trajectory of the robot
arm should be limited to keep the target object visible; also,
if the camera gets very close to the object some global visual
information about the object might be lost (e.g. object shape,
contours). Another approach, which is typical in humanoid
robots, is to mount the cameras in the eyes/head - the eye-to-
hand configuration. This configuration is more biologically
inspired, it offers a global sight of the task space and it allows
to selectively direct the robot attention (independently from
the arm motion). However, it requires estimating the pose
of both the robot hand and the target object from vision,
which are challenging problems. Moreover, the long camera-
to-hand kinematic chain, and the fact that the eyes and head
can move, introduce serious calibration issues, making it very
hard to maintain the reference frames of the cameras and of
the hand well aligned. A typical solution to alleviate this

problem is to use markers in the robot hand in order to
estimate its pose [14], [15], [16], [17], [18], [19], [20], [21].
In [14] the use of a single camera and a landmark (a light
bulb emitting red) in the hand, together with the reflection
of a flat mirror, improved the 3D estimation of the hand
position in the world. In [15], [16], [17], [18], [19], [20],
artificial markers are attached to the robot wrist (a check
pattern in [15] and a coloured ball in [16], [17], [18], [19],
[20], allowing to execute accurate reaching/grasping [15],
[16], [17], [18], also with whole-body movements [19] and
by using tools [20]. The humanoid robot REEM was used
in [21] to perform reaching and grasping tasks with visual
feedback, using markers on the hand and on the objects.

Markerless robotic arm posture estimation was been pro-
posed in some recent works using 3D-vision sensors [22],
[23]. In [22] the 3D robot model is compared with the
point-cloud of the real arm and properly adapted. In [23]
the point-cloud is used to train two random forests; one to
differentiate between background and arms, and another to
estimate the arm posture. Gratal et al [24] use 2D features
and an optimisation strategy based on gradient descent to
realise virtual visual servoing [25]; this work was extended
to include depth information in [26].

Our approach is also based on 2D visual features (ei-
ther silhouette segmentation or edge extraction); however,
we perform optimisation based on particle filtering, which
differently from gradient descent is not prone to converge to
local minima. In previous work, we provide details on how
the GPGPU implementation of our system can achieve real-
time hand pose estimation and kinematic chain calibration
simultaneously and effectively in the iCub robot [4], [5]. In
this paper we show how this system can support markerless
visual servoing, allowing to perform precise reaching and
grasping in the real world.

III. PROPOSED METHODOLOGY

Let us consider the problem of robotic reaching and
grasping. Reaching consists in moving the hand from an
initial configuration Th to a desired configuration Td where
the hand is positioned in an adequate pose to grasp the object
by closing the fingers under some control law. Configurations
Th and Td are elements of SE(3), the special Euclidean
group, and represent the coordinate transformation from a
source reference frame (here the initial and desired hand
configurations) to a common reference frame, in our case the
left eye of the robot. A common representation for elements
of SE(3) is that of 4×4 matrices of the form:

T =

[
R t
0 1

]
(1)

where R is a 3×3 rotation matrix, t is a 3×1 translation
vector, and 0 is a 1×3 vector of zeros. 1.

1For simplicity, and because collision avoidance is not in the scope
of this work, we assume that the space between the initial and final
configurations of the hand is free of (self-) collisions in a production system
these conditions must be checked carefully and, if not met, use a planning
algorithm (e.g. the RRT algorithm [27]) to drive the robot to a configuration
where these assumptions are met.



To drive the hand from initial to desired configuration one
has to cancel the error transformation: dTh = (Td)

−1
Th.

However, in practice is difficult to estimate dTh. Here
we analyse the problems arising from errors in the estimate
of Th. Methods to estimate Td, which basically depend on
the estimation of the object pose, are out of the scope of
this work (several methods exist for pose estimation of rigid
objects from CAD models [28]).

A common way to estimate Th is to use the robot’s inter-
nal model kinematics function. Let K(q) be the kinematics
function that transforms points from the robot’s hand to the
left eye, where q is the vector of robot’s joint angles. An
estimate of the hand pose can be obtained by: T[kin]

h = K(q).
However, several sources of calibration errors may exist in
the kinematics transformation, from errors in its parameters
to non-modeled aspects. Particularly in long kinematic chains
(as our case) these errors may significantly affect the estimate
of the hand pose T

[kin]
h .

A. Internal Model Calibration

The visual feedback is used to constantly update the
robot’s internal model. In our previous papers, we provide
details of this adaptation process [5] and its generalisation
capabilities [4], that are summarised hereinafter.

We encode the calibration errors in a set of parame-
ters β representing offsets in the robot’s arm joints, i.e.:
qr = q + β, where qr are the real angles and q are the
measured angles. Given an estimate of the joint offsets β̂, a
better end-effector’s pose estimate can be computed by:

T
[cal]
h = K(q + β̂) (2)

To estimate the parameters β we compare the current
images acquired by the cameras with images synthetically
generated by a graphics game engine (Unityr) and the CAD
model of the robot. The search for the set of values β that
provide the best match between the real and the synthetic
images is performed with a Sequential Monte Carlo method
similar to a particle filter adapted to the estimate of constant
state vectors (parameter estimation) [29].

Let us consider distribution p(βt|q1:t,y1:t) that represents
our belief on the values of β at time t given all past
observations of the joint encoder angles q1:t, and acquired
images y1:t. This distribution is approximated by a set of M
samples (particles): Bt :=

{
β
[1]
t ,β

[2]
t ,β

[3]
t , · · · ,β

[M ]
t

}
, with

an associated importance weight ω[m]:

ω[m] = p(yt|qt,β[m]
t ) , m = 1, · · · ,M (3)

The likelihood function (3) is described in Sec.III-B, Eq.
(4). The set of particles is then re-sampled according to the
importance weights to replicate samples with high likeli-
hood and remove samples with low likelihood. Finally, an
artificial dynamics is introduced in the transition model of
the parameters β defined as: βt = βt−1 + ξ, where ξ is an
artificial dynamic noise which decreases when t increases.
The particles are thus modified using: β[m]

t ← β
[m]
t + ξ. The

cycle composed of the steps for (1) importance weight com-
putations, (2) re-sampling and (3) artificial noise injection,
can be repeated a few times to improve convergence.

We need to compute our best guess β̂ from the particle
distribution to calculate the end-effector’s pose estimate
(Eq. (2)). Instead of choosing the particle with the highest
weight in each time step, we compute a kernel density
estimation to smooth the particles’ weight according to
the information of neighbour particles. The best guess will
be the particle with the highest smoothed weight (ω′[i]):

ω′[i] = ω[i] + α · 1
M

M∑
m=0

ω[m] ·K(β[i],β[m]), where ω[i] is

the particle likelihood, α is a smoothing parameter, M is the
number of particles and β[i] is the particle we are smoothing.
The sum term is the influence of the neighbors in the score
of particle i. K is a Gaussian Kernel specifying the influence
of one particle in others.

B. Observation model

We exploit the edge information extracted from images
proposed in [5]. The average distance between the edges
of the real image to the closest edge of the virtual image
is denoted by d̄. The Distance Transform metric proposed
by Borgefors ([30]) is used to compute d̄. The Distance
Transform (DT) consists in the application of an edge
detector to the image (e.g. [31]) and then, for each pixel,
compute its distance to the closest edge point. This distance
has a minimum of 0 pixel and a maximum of 255 pixel since
the DT result is an 8-bit single-channel image. Let D(y) be
the Distance Transform of the real images and E(ŷ[m]) be
the edge map (binary image indicating the edge pixels) of the
virtual image generates with robot configuration q + β[m].

The average distance, d̄[m] for each particle, can be
efficiently computed using the Chamfer matching distance

([32]): d̄[m] = 1
k ·

N∑
i=0

E
(
ŷ[m](i)

)
·D (y(i)), where k is the

number of edge pixels in the virtual image, i is an index that
runs over all pixels, and N is the total number of pixels.

A perfect match between the real and virtual images will
correspond to d̄ = 0 whereas bad matches will correspond
to large values of d̄. The likelihood function become:

p(yt|qt,β[m]
t ) ∝ exp−λedge· d (4)

where λedge is a tuning parameter to control sensitivity in the
distance metric.

C. Visual Servoing

Visual Servoing, also known as visual servo control, is a
feedback closed-loop control strategy based on visual data.
In this work, we use an eye-to-hand configuration, where
the cameras looking at the scene are not attached to the end-
effector and can observe it. In our case, we have a humanoid
robot and the cameras are in the eyeballs.

In this work, we follow the usual control law in eye-to-
hand [2] position-based visual servoing [33].

Following the notation from the previous section, the error
to be minimised is the transformation from current to the



(a) Translation errors (b) Orientation errors (c) Norm of the error (d) Joint angles

Fig. 2: Example of visual servoing convergence during one experiment.

desired hand pose dTh and can be written as:

e = [t, θu] (5)

where t is the translation component and θu the rotation
in axis-angle notation. The relationship between the time
derivation (ė) and the joint velocities (q̇) of the robot arm
can be expressed as:

ė = Js(q)q̇ (6)

where Js(q) is the feature Jacobian matrix defined as:

Js(q) = Le · dVl · lJh(q) (7)

where the subscript l denotes the left eye reference frame,
lJh(q) is the robot Jacobian evaluated at the current config-
uration q, and dVl is the spatial motion transform matrix:

dVl =

[
dRl [dtl]× ·d Rl

0 dRl

]
(8)

where [t]× represents the skew-symmetric matrix associated
to the translation vector t and dRl is a rotation matrix.
Furthermore, the interaction matrix Le is defined as:

Le =

[
dRh 0
0 Lθu

]
(9)

where:

Lθu = I3 −
θ

2
[u]x +

(
1− sinc θ

sinc2 θ2

)
· [u]2x (10)

Finally, to ensure an exponential decoupled decreasing
error (i.e. ė = − λ · e), the control law is defined as:

q̇ = −λ · J†s · e (11)

where λ is the control gain vector and J†s the pseudo Moore-
Penrose inverse of the feature Jacobian matrix.

In this work, instead of the measured joint angles q we use
the calibrated values of the joint angles q+β̂ to compute the
robot Jacobians, Jh and Js, as well as the calibrated error
transformation dT

[cal]
h = (Td)

−1
T

[cal]
h .

IV. RESULTS

The markerless visual servoing approach was tested in
the iCub robot [1] with an object belonging to the YCB
dataset [34] used to benchmark manipulation research. The
pudding box used in the experiments is graspable by the
iCub robot hand[35]. The object pose is estimated using a
fiducial marker - Aruco board [36] exploiting an off-the-
shelf implementation provided by the OpenCV library. Then,
a fixed roto-translation matrix is defined from the marker
(placed on the table) to the object and hand desired poses.

The experiments made in the real platform are reported
in this section. First, we define the error metric used to
evaluate the experiments. Then, we analyse the robustness
of the visual servoing control strategy and the estimation of
the hand pose. Finally, we validate the grasping success of
the iCub robot comparing both strategies, feedforward (non-
calibrated) and feedback (calibrated) approaches.

a) Error metrics: The validation of the reaching and
grasping task relies on measuring the distance between the
desired and final positions of the thumb and index fingertips
on the object. On the YCB pudding box object used in the
experiments, the desired position of the index fingertip is on
the lower part of the ’J’ of the red JELL-O word printed on
the box cover (see Fig. 4); the desired position of the thumb
fingertip is at the same height on the other side of the box.
We define the distance as:

ϕ[e] = ϕ[d] − ϕ[f ] (12)

where “ϕ” is either the thumb or the index finger position,
[e] denotes the computed error distance, [d] the desired finger
position and [f ] is the actual final position of the finger. To
account for the cases where the object has moved due to
hand object collision, we introduce the object displacement
measurement (object[e]) and define the total error ([Te]) for
each finger as:

ϕ[Te] = ϕ[e] + ϕ[e] (13)

b) Visual Servoing metrics: The evolution of the error
pose (e) defined in (5) can be seen in Fig. 2 (a), (b) and (c),
respectively the translation component, rotation component
and norm. As expected, the error has a smooth exponential



(a) Non Calibrated (b) Calibrated

Fig. 3: Example of an uncalibrated (a) and calibrated (b) eye-
hand kinematic chain and the errors in the 2D projection of
the thumb, index and middle fingers

decreasing evolution. The step variations at time=20s and
time=30s, that can be noted in the orientation error, are
caused by a quick and sudden adaptation of the calibration
parameters, that in turn generates a new and different esti-
mate of the hand pose. However, these steps in the hand pose
estimation are naturally smoothed out by the controller, and
thus do not generate discontinuities or sudden variations in
the trajectory and speed of the hand movement, as it can be
seen in Fig. 2 (d).

c) Hand pose estimation: The projection of the thumb,
index and middle fingers using only the kinematic and the
camera models can be seen in Fig. 3 (a); the difference
between the real fingers positions in the image and the
projected estimation using the kinematic chain can be easily
noted. Indeed, these errors can be sufficient to critically
increase the reaching error and lead to grasping failures.
Instead, Fig. 3 (b) shows the improved hand pose estimation
provided by our proposed method, in which the misalignment
between the real and estimated hand projection is almost null.

d) Grasping task benchmark: The robot performed
reaching and grasping of the target object in six different
locations spread around the workspace. For each one, the
robot reaches for the object and tries to grasp it without any
visual feedback (i.e. open-loop strategy). Then, it returns to
the initial position and restarts the reach-to-grasp movement,
performing continuous online calibration of the model and
estimation of the hand pose during the motion to refine the
alignment between the visual perception and the internal
model: this constitutes a markerless position-based visual
servoing (i.e. closed-loop strategy). At the end of each reach-
to-grasp movement (both open-loop and closed-loop), we
measure the distances between the desired and final positions
of the thumb and index fingertips.

TABLE I reports the final errors of the fingertips bad
their average ( t+i2 ) in the performed experiments. All errors
were reduced in the visual servoing (i.e. with online cali-
bration/continuous visual feedback) comparing to the open-
loop strategy (i.e. without calibration/visual feedback). Fig. 4
shows the final hand position and the target object in one of
the experiments (i.e. “Pose 2”): in the non-calibrated (a) and
calibrated (b) case. While in the non-calibrated open-loop

(a) Non Calibrated (b) Calibrated

Fig. 4: Example of the final pose of the hand in one of the
experiments: uncalibrated (a) and calibrated (b). In the non-
calibrated scenario the grasping fails. The desired position
for the index fingertip is the lower part of the J on the cover
of the JELL-O Pudding Box.

Non-Calibrated/Open-loop Calibrated/Closed-loop
t[Te] i[Te] t+i

2
t[Te] i[Te] t+i

2
Pose 1 [mm] 58.5 39 48.75 19 7.5 13.25
Pose 2 [mm] 75 60 67.5 27 25 26
Pose 3 [mm] 71 49 60 29 22 24.5
Pose 4 [mm] 70 54 62 50 37 43.5
Pose 5 [mm] 56 40 48 41 31 36
Pose 6 [mm] 77 74 75.5 30 19 24.5
Mean 67.92 52.67 60.29 32.67 23.58 27.95
StdDev 8.69 13.20 10.68 11.04 10.19 10.49

TABLE I: Errors measured in the finger tips (t - thumb and
i - index) during the experiments. The average errors have
decreased by more than a factor of 2.

control case the grasping fails, the proposed markerless vi-
sual servoing approach with online hand pose estimation and
model calibration allows to perform a successful precision
grip of the object. A demonstration of the contribution and
performance of this work can be seen in the video attachment
(https://youtu.be/hWb3nFD-xzI)

In all cases, our online procedure reduces the positioning
errors to less than half the non-calibrated case. More impor-
tantly, it allows to obtain a very high accuracy in positioning,
doing that extra-mile that can permit the execution of precise
grips in many practical applications that would be otherwise
not accessible. Moreover, it has to be considered that part of
the residual positioning error still present in the calibrated
case is caused by imprecise estimation of the object pose,
that is not a focus of this paper and was realised with a very
simple approach.

V. CONCLUSION AND FUTURE WORK

We have presented a visual servoing architecture for
reaching and grasping tasks in humanoid robots. This is
essential for increasing the grasp success rates in non-
trivial manipulation scenarios and to cope with unavoidable
uncertainties and calibration errors of robots with complex
kinematics chains and “eye-to-hand” visual configurations.
The method was implemented in the iCub robot and experi-



ments were made showing its effectiveness and benefits with
respect to the conventional open-loop approach implemented
in most of the current works. With the presented work
we have demonstrated the feasibility of visual servoing in
humanoid robots without markers and hope to spawn further
research on the application of visual feedback in the control
of manipulation actions, paving the way for truly adaptive
systems, able to react to disturbances and errors both in
the environment and in the robot model itself. Our future
work will focus on combining the presented approach with
image based visual servoing methods, to compensate also for
possible errors arising in the estimation of the object’s pose.
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