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Abstract—Visual Servoing is a well-known subject in robotics.
However, there are still some challenges on the visual control of
robots for applications in human environments. In this article,
we propose a method for path planning and correction of
kinematic errors using visual servoing. 3D information provided
by external cameras will be used for segmenting the environment
and detecting the obstacles in the scene. Rapidly-exploring
Random Trees are then used to calculate a path through the
obstacles to a given, previously calculated, end-effector goal
pose. This allows for model-free path planning for cluttered
environments by using a point cloud representation of the
environment. The proposed path is then followed by the robot
in open-loop. Error correction is performed near the goal pose
by using real-time calculated image features as control points
for an Image-Based Visual Servoing controller that drives the
end-effector towards the desired goal pose. With this method,
we intend to achieve the navigation of a robotic arm through a
cluttered environment towards a goal pose with error correction
performed at the end of the trajectory to mitigate both the
weaknesses of Image Based Visual Servoing and of open-loop
trajectory following. We made several experiments in order
to validate our approach by evaluating each individual main
component (environment segmentation, trajectory calculation
and error correction through visual servoing) of our solution.
Furthermore, our solution was implemented in ROS using the
Baxter Research Robot.

Keywords: 2D Visual Servoing, Depth Camera, Collision
Avoidance, Rapidly-exploring Random Trees.

I. INTRODUCTION

Nowadays it is expected for robots to operate on human
environments. However, these environments are usually com-
plex. Apart from the target object, other objects are cluttering
the scene. This turns out to be hard for a robot to execute the
task since it does not know how to avoid the obstacles while
trying to reach its goal.

Robots are extremely complex machines, with long kine-
matics chains which makes them hard to calibrate. Therefore,
when executing a reaching task using an open-loop controller,
the final pose of the end effector is often not the one desired
by the user, due to internal model errors. Visual servoing (VS)
has been employed often as the method to solve the problem of
open-loop controllers by closing the control loop with visual
feedback.
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Fig. 1: Scene containing the Baxter Robot, a 3D camera and
a table with objects

However, VS approaches do not have a standardised way
to avoid obstacles in the environment. Therefore, there is
a need to calculate a trajectory through the environment
while avoiding obstacles. Following trajectories with VS in
a cluttered environment can be very hard because of the high
probability of occlusions.

The objectives for this work can be divided into two parts:
i) the calculation and execution of a collision-free trajectory
through a cluttered workspace and ii) correction of end-
effector final pose, due to errors in the robot’s internal model,
using real-time calculated visual features.

Rapidly-exploring Random Trees [1] are a relatively well-
known approach for path planning but its applications on
robotics and cluttered environments are still limited due to
the reliance on previously modelled workspaces. In order
to build a more adaptable system we propose the usage of
3D information collected from a depth sensor over-viewing
the environment in which the robotic end-effector operates.
Through this information, the obstacles will be detected and
sent to a path planning algorithm, along with a desired final
pose, to calculate a collision-free trajectory. This will allow
greater flexibility in which this type of algorithm can be
applied to since it does not require the offline acquisition of
the environment’s 3D model. The only necessary equipment
is an external depth sensor, allowing for a better adaptation
to new world configurations. The calculated trajectory is then
followed in open-loop to test its validity.

Visual Servoing is a common solution in robotics when it
comes to closed-loop control. It is most often used as a way
to correct the trajectory when there are external disturbances
or when the robot model is inaccurate. This errors can make



a given task impossible, in particular, on tasks that require
precision, like grasping and manipulation of objects. VS uses
visual information as a proxy to the real state of the robot’s
end-effector and uses visual features from these images to
minimise an error function calculated through the current
and desired feature values. In this work, to correct the end-
effector final pose achieved from the open-loop execution of
the trajectory, we will use a VS controller that uses real-time
calculated 2D visual features to take the robot’s end-effector
from its current pose to the desired one.

II. RELATED WORK

Kappler et al. [2] define three kinds of approaches for mo-
tion planning in robotic grasping and manipulation. The Sense-
plan-act (i)) is a strong modular approach that divides the
servoing task into smaller subproblems (separates environment
sensing, path planning and trajectory execution) but does not
adapt well to changes in the environment, ii) Locally Reactive
Control, where only the local geometry near the end effector is
considered, and iii) Reactive Planning, which is a combination
of the two approaches above, but it has few implementations
on robots with a high number of degrees of freedom. Our
work fits between sense-plan-act and Locally Reactive Control
since it uses components from both elements, namely by doing
a coarse representation of the environment and computing a
collision-free path and then using a locally reactive controller
to correct errors in the end-effector pose using visual servoing.

Current applications of the RRT algorithm to the field of
Visual Servoing are quite limited since they require a pre-
made model of the environment. Kazemi et al. use an Imaged-
Based Visual Servoing (IBVS) controller with an Eye-in-Hand
robot configuration. A model of the environment is fed to the
RRT algorithm. The path calculated is then followed through
visual Servoing by tracking the visual feature’s trajectory in
the camera image.

Most works on Visual Servoing tend to use markers in order
to quickly calculate image features. This presents satisfactory
results but introduces a degree of artificiality to the environ-
ment and reduces the adaptability of the systems. In [3] SURF
features ( [4]) are used within an IBVS framework. By doing
feature matching on the reference and current image, they
select a region of interest which will be tracked throughout the
motion of the camera. This is done to reduce the computation
time in finding and comparing features. They use geometrical
measurements taken from this region of interest as the visual
features used in the controller.

In [5] it is presented an Eye-to-Hand Position-based Visual
Servoing controller where the visual feedback obtained from
the cameras in the robot’s eyes is used to calibrate the robot’s
internal model in order to mitigate the errors in the inverse
kinematics of the robot. This is done by adding the offset
between real joint angles and measured joint angles. By doing
this, the robot’s internal model is continuously being fixed to
its correct state. The offset value is calculated comparing the
captured images and images generated in simulation.

Fig. 2: Schematic for the approached used featuring its main
components.

III. METHODOLOGY

The pipeline of our solution can be seen in Figure 2.
Through the 3D information provided by an RBG-D camera,
we obtain a point cloud representation of the environment.
On this representation, we identify the obstacles present in
the environment and then calculate a collision-free trajectory
using RRT. We then execute this trajectory in open-loop until
the end-effector reaches the vicinity of the desired pose.
Error correction using IBVS is then performed using the
visual information from the 2D camera attached to the robot’s
arm. We will go into further detail about each of the main
components in this section.

A. Obstacle Detection

In order to detect the obstacles present in the environment
where the robot will operate we first need to obtain a represen-
tation of it. We do this by taking the point cloud information
from an RGB-D camera overlooking the environment.

Having this representation we then need to ascertain what
constitutes an obstacle. We take as an assumption that the
working scene is a table with some mundane objects on top of
it. With this assumption, we can perform tabletop segmentation
to identify the point clusters that represent the obstacles in the
point cloud representation of the environment. The extracted
table point cloud is also considered an obstacle to our task.

1) Filtering the environment: To perform tabletop segmen-
tation we first use the Random Sample Consensus (RANSAC)
[6] algorithm to identify the dominant plane in the point
cloud, in this case being the plane of the table’s top part.
This algorithm works by detecting the inliers in a set of data
that fit a certain model. It selects, randomly, part of the data
and calculates the model that fits this data. It then compares
the rest of the data to that model. The algorithm stops when
enough elements of the rest of the data set fit the proposed
model. The model estimated by RANSAC in our approach is
a planar model.

After removing all inlier points belonging to the table, the
point cloud is now constituted solely by the objects and parts
of the robot that happen to be in view of the camera. However,
we don’t want the arms of the robot to appear in the point
cloud. This is because if they were seen as obstacles by our
program then the arms wouldn’t move since the system would



think a collision is occurring. To remove the arms we use the
robot’s internal model. We calculate the lines between each
consecutive joint in the arms of the robot and, if a point is
within a given radius of those lines, it is discarded.

2) Grouping the points into clusters: Now we have a
completely filtered point cloud with only the points belonging
to the objects. We now need to group up the points into clusters
that form compact objects, one cluster for each obstacle. This
is done by using k-d trees and nearest neighbour search. These
are a type of binary trees that separates points according
to their position. Representing the point cloud in this way
makes it easier computationally to perform a nearest neighbour
search. If many points are in the neighbourhood of one another,
they belong to the same cluster.

When all points have been assigned a cluster we have a
representation of each individual object in the original point
cloud.

B. Collision Avoidance

To calculate a collision-free trajectory we use algorithms
already available in software frameworks for motion planning.

These trajectories are planned in 3D space. The planners
build the trajectory through a series of pose way-points and,
through inverse kinematics, an arm configuration that does not
produce a collision with the rest of the environment is found.
The pose way-points are calculated through sampling of the
3D workspace.

In the context of RRTs, the state space (in which the tree is
grown) is the end effector pose state space. In each iteration of
the tree growing process, the nearest pose state to the current
one is found. Then the path necessary to reach them is tested
for environment collisions and joint limits. If the path passes
these tests, it is added to the tree.

After the trajectory is calculated, it is followed in open-loop,
leading the end-effector to a vicinity of the target pose.

C. Visual Servoing

Once we reach the vicinity of the target configuration by
following the open-loop trajectory, we can now correct the
errors in the final pose of the robot. To do this we use
an Image-based visual servoing controller that uses real-time
calculated features in order to have a model-free correction of
the errors. The target features are extracted based on SURF
features [4].

1) Visual Features: Speeded Up Robust Features (SURF)
[4] is a local feature detector and was inspired by SIFT [7].
However, SURF uses integral images for a better computa-
tional performance. To locate the points of interest, the SURF
algorithm uses Gaussian filters of increasing size and then
performs non-maximum suppression in a neighbourhood of the
keypoint candidate to locate it. In order to assign an orientation
feature to its descriptor, the Haar wavelet response is calcu-
lated in the x and y directions. The dominant orientation is
calculated by summing the responses within a defined sliding
window.

2) Visual Servoing Controller: The aim of controllers based
on visual servoing is to minimise the error function e(t)

e(t) = s− s∗, (1)

where s and s∗ are the current and desired visual feature
values, respectively.

To define the desired final position of the end effector, the
robot is placed on the target position at a calibration phase,
and the reference image is taken and stored. Then, in run
time, we match the features extracted from the current camera
image with the one from the reference image using k-nearest
neighbours. To filter out some mismatches, we use Lowe’s
Ratio Test [7]. With a set of dependable keypoint pairings, we
can now use them as visual features for the visual servoing
controller. We used the velocity controller proposed by [8]:

vc = −λL̂+
e e, (2)

where vc is the velocity matrix on the camera frame, λ is for
exponential decrease of the error and L̂+

e is the estimation
of the pseudoinverse of Le. As for the estimation of the
interaction matrix, we chose to define it in relation to the
desired image visual features.

3) Controlling the robot: With the method described above,
the controller calculates a velocity to be applied to the camera.
We now have to make the robot apply this velocity to its end
effector. Therefore, we need to translate this velocity to a set
of joint velocities to be applied to the robot’s arm.

We can exploit the robot’s Jacobian matrix to do it. This
matrix translates the velocity of a given joint into a certain
Cartesian space change, as can be seen in (3), in which v̇
represents 6 DoF velocity, J is the robot’s Jacobian matrix
and q̇ is the vector of joint velocities.

v̇ = Jq̇ (3)

For robots with DoF different from 6, the Jacobian matrix
is non-invertible and there are infinite possible solutions. To
solve this, we use the approach in [9]. The Moore-Penrose
pseudo-inverse of the Jacobian, J+, is used instead of the
normal matrix inverse. The joint velocities are then calculated
by:

q̇ = J+v̇. (4)

With this, we now have a joint velocities vector that will
move the robot’s end-effector to the desired final pose, thus
correcting any error there was in its final pose after the
execution of the collision-free trajectory.

IV. IMPLEMENTATION

In this section, we will go through some details on the
implementation of the proposed solution and of the software
used.



A. Software Framework

We used ROS [10] for communication between our appli-
cation and the robot, and for communication between our
software. To simulate the test environment and the robot’s
response to our solution we used the Gazebo simulator [11].
Interaction between our solution and Gazebo is done through
ROS topics, allowing for control of the robot’s model in the
simulator. In order to perform collision-free path planning,
we use the MoveIt motion planning framework [12]. Moveit
performs planning through an external library called Open
Motion Planning Library (OMPL) [13], which is a motion
planning library with several planners implementations but
without the notion of a robot and so MoveIt provides the
back-end computation necessary for problems in robotics.
The RRT implementation used in this work comes from this
library. After calculating the path MoveIt sends the necessary
commands to the robot’s controllers and executes the desired
task. This works also with the simulated controllers available
through the Gazebo simulator.

Finally, for the implementation of the visual servoing con-
troller, we used ViSP [14]. ViSP stands for Visual Servoing
Platform and it is a library that allows the development
of applications with visual tracking and visual servoing by
computing control laws that can be applied to robotic systems.

B. Software Architecture

In Figure 3 we can see the implementation schematic for
the detection of obstacles. We take a point cloud from the
3D camera and transform it into world coordinates. Then the
operations described in III are done on this point cloud in
order to get the point clusters of the objects. The bounding
boxes of the point clouds are then calculated.

In Figure 4 the process to transform the bounding boxes to
MoveIt obstacles is shown. All obstacles are removed from the
planning scene and the bounding box’s pose and dimensions
are translated into an obstacle and published into the planning
scene. To calculate and execute the trajectory, MoveIt receives
a final pose and a trajectory planner. It then calculates the
trajectory and executes it through interaction with the robot’s
controllers.

In Figure 5 the feature extraction and visual servoing imple-
mentation is explained. From the robot’s end-effector camera’s
the reference and current images are extracted. Features are
extracted and filtered as explained before in section III and
the features are added to the visual servoing task and the
camera velocity is calculated. The robot Jacobian is taken from
MoveIt, but to do this the joint positions of the robot need to
be updated. Joint velocities are then calculated and translated
into a change of the robot’s current joint positions. This new
robot joint positions are sent directly to the robot for execution.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

The experiments were performed in a simulated environ-
ment using the Gazebo simulator. The scene is composed of a
3D sensor in a pedestal, a table with some objects on top and

Fig. 3: Implementation flowchart for obstacle detection.

Fig. 4: Flowchart with the process for passing the detected
obstacles to MoveIt and for path planning and execution.

a robot - Baxter Research Robot. Baxter has two arms with
seven degrees of freedom, with an RGB camera on the wrists.
Moreover, it is equipped with a parallel gripper.

B. Detection of obstacles

In Figure 6 (a) we can see the full point cloud perceived
by the depth sensor (without any filtration of its components).
However, in this figure, we can still see points that represent
parts of the arms of the robot (the black parts after the edge
of the table). By using the process explained previously we
removed the arms of the robot.

In Figure 6 (b) the final result of the filtering process and
bounding box calculation can be seen. The bounding boxes
are coherent with the segmented point cloud clusters presented



Fig. 5: Flowchart of the real-time feature calculation and visual
servoing.

(a) (b)

Fig. 6: (a) Captured point cloud of the environment and (b)
bounding boxes representing the obstacles in the scene.

above. Moreover, the obstacles are represented through their
bounding boxes (objects, table and robot’s torso).

C. Collision-free trajectory

The RRT path-planning implementations (RRT and RRT*)
used in this work were the ones provided within MoveIt
package. In our experiments, we found that base RRT produces
longer paths with unnecessary movement because it does not
optimise path length. RRT* produced a much shorter path.
This can be seen in Figure 7. Indeed, one can see three frames,
one from the beginning, one from the middle and one from the
end of a trajectory calculated using RRT and RRT*. On the
second frame, it can be seen that RRT produces an exaggerated
motion while RRT* produces an optimised trajectory. The path
optimisation of RRT* comes with an increased computational
cost. According to our experiments, RRT* takes two orders of
magnitude more than planning with RRT (RRT* took seconds
while RRT took tenths of seconds).

Fig. 7: (a) RRT calculated path. (b) RRT* calculated path.

(a) (b) (c) (d)

Fig. 8: Lowe’s Ratio test: (a) 1. (b) 0.7. (c) 0.5. (d) 0.3.

D. Visual Servoing

In order to choose the best value for the Lowe’s Ratio Test
(i.e., how to choose the number of features, we ran some
test with several hypotheses. In Figure 8, the results of SURF
features using the Lowe’s Ratio Test are presented with ratios
of 1 (all matches are used - without filtering), 0.7, 0.5 and 0.3.
As was to be expected, the first image has a lot of incorrect
matches, since no filtering is performed. On the second image,
although the ratio is set to a value below the one proposed in
[7] of 0.8 (which in their case eliminated 90% of incorrect
matches), there are still some incorrect matches. On the third
and fourth images, all matches are valid ones.

To test the impact of having incorrect matches in the control-
loop, we tested the visual servoing with the ratio threshold
having several values. In Figure 9 we can see a graph of
the results of these experiments. The error in the graph is
normalised to the number of features because the number of
features varies during the servoing. This error is calculated
by the sum of the squared errors between current and desired
features (since the features are defined by their coordinates,
it measures the difference in image coordinates). As it was
expected, with the ratio set to 1 the system became unstable.
With lower values of the ratio, the system eventually trended
towards the minimisation of the error (even with ratio values
where there are still incorrect matches). Another important
conclusion is when we are stricter with the features chosen,
the lower the error is and the quicker the system trends towards
the desired result. One curious fact that can be observed in the
graph is that the normalised error starts quite low, rises up and,
when it does not become unstable, goes back down. This is



Fig. 9: Error of the visual servoing features with the variation
of the ratio threshold.

(a) (b) (c)

Fig. 10: Frames at the beginning (a), middle (b) and end (c)
of the visual servoing task. Top images are the current image
and the bottom image is the target.

because at the start of the task the end-effector is still a bit
far away from the object and therefore the number of features
is not that high. When the end-effector starts going towards
the object more and more quality feature matches are found
and the normalisation of the error is not enough to keep the
error from rising, although the average individual feature error
is lower since the end-effector is moving towards the desired
pose. The error starts lowering again because the number of
features stabilises and the end-effector keeps moving towards
the final desired pose. This could be avoided by choosing a
fixed number of the best feature matches.

In Figure 10, one can see three frames taken during the
servoing: (a) at the beginning, (b) at the midpoint and (c) near
the target pose. The top images are the current view, the bottom
ones are the desired one.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a two-phase control scheme,
where an open-loop controller drives the arm close to the
target, and a markerless image-based visual servoing reduces
the error on the final end-effector pose by closing the loop
using images features. Our method does not assume any
hand-crafted 3D model or any specific knowledge about the
environment, apart from the assumption of a table on the
scenario. The environment is created on the fly by means of

3D point cloud segmentation and clustering and a trajectory
towards the target is calculated using Rapid Exploring random
Trees. Moreover, and to reduce the final error, we developed a
markerless image-based visual servoing strategy using SURF
features which are calculated and evaluated (using Lowe’s
Ratio) in real-time.

As future work, we would like to use a more complex
way to represent the obstacles and to mitigate the reliance
on correct 3D sensor placement. This could be done by using
point cloud reconstruction methods in order to get a full point
cloud from a partial one. The integration of visual servoing
during trajectory execution would also be important. However,
occlusions will always be a problem when it comes to cluttered
environments since we rely on visual features. Furthermore,
another important addition would be the incorporation of a
depth estimation method. In this work, we have used a roughly
estimated depth of the target features. Although it does not
influence the task’s success rate, it influences the speed of
convergence of the visual servoing.
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