
Robotic Interactive Physics Parameters Estimator (RIPPE)

Atabak Dehban*1,2, Carlos Cardoso*1, Pedro Vicente1,
Alexandre Bernardino1, and José Santos-Victor1

Abstract— The ability to reason about natural laws of an envi-
ronment directly contributes to successful performance in it. In
this work, we present RIPPE, a framework that allows a robot
to leverage existing physics simulators as its knowledge base
for learning interactions with in-animate objects. To achieve
this, the robot needs to initially interact with its surrounding
environment and observe the effects of its behaviours. Relying
on the simulator to efficiently solve the partial differential
equations describing these physical interactions, the robot infers
consistent physical parameters of its surroundings by repeating
the same actions in simulation and evaluate how closely they
match its real observations. The learning process is performed
using Bayesian Optimisation techniques to sample efficiently
the parameter space. We assess the utility of these inferred
parameters by measuring how well they can explain physical
interactions using previously unseen actions and tools.

I. INTRODUCTION

For an agent (artificial or biological) to survive in a phys-
ical environment, it must continuously choose actions that
derive its sensory states towards goal states. This entails an
understanding of the governing laws in the environment, i.e.
physics.

Developmental studies of humans demonstrate a remark-
able ability in young babies to show consistent physical
expectations. More specifically, the period between four to
six months of age appears to be an important phase in
understanding “objectness”. E.g. infants of 4 months old are
more likely to associate two heads of an occluded bar to a
single, bounded object compared to younger children [3]. By
the age of four months, infants can track a moving ball with
their eyes, even if it is occluded by a narrow screen, and by
the age of six months, they can reliably track it even when
occluded by wider screens [21]. More inline with the present
study, Berthier et al. [6] showed that nine months old infants
reliably predict the reappearance of an occluded ball along
a track, only if the track is not blocked by a wall, i.e. they
give some evidence that babies can predict the interaction
between the wall and the ball.

This developmental path suggests that the understanding
of objects and their interactions is gained through life ex-
periences continuously as humans engage and interact more
and more with their surroundings. The goal of this work is
to allow an agent (more specifically, iCub [29]) a similar

1 Institute for Systems and Robotics, Instituto Superior Tećnico, Univer-
sidade de Lisboa, Lisbon, Portugal
Email: {adehban,ccardoso,pvicente,alex,jasv}@isr.tecnico.ulisboa.pt

2 Champalimaud Centre for the Unknown, Lisbon, Portugal
∗ indicates equal contribution.

Fig. 1: iCub trying to infer consistent physical parameters of
an object by repeating its physical interactions in simulation.
These parameters should describe the object behaviour in
response to novel tools or actions.

reasoning capability about intuitive physics (see [25] for an
overview about the usage of the term).

To this end, we allow the robot to interact with the envi-
ronment and take notes of the effects it causes. However, for
artificial agents, there are already many physics simulators
available to solve the Newtonian dynamics equations of
motion, alleviating the need to learn these dynamics through
interaction. To use these simulators, one needs an appearance
description of a scene (typically meshes or shape primitives),
mass and inertia of the objects and friction coefficients.

In this work, we consider a life-long learner that can
interact with objects in an environment via known actions
and has access to the 3d shape of those objects. Through
these interactions with real world objects, our agent gathers
statistics regarding how objects behave with respect to known
actions. Later, the robot repeats similar interactions with the
3D models of objects in simulation and adjusts the physical
parameters of those objects (e.g. mass, damping and friction
coefficients, etc. assuming uniform mass distribution) such
that the simulated observations get closer and closer to real
observations.

When faced with a new action or tool, the robot bootstraps
these physical parameters based on the previous interactions
it had with that objects and successfully predicts how would

the object behave as a result of the new interaction.
This paper has the following contributions:
1) We infer consistent physical parameters using only

snapshots of the environment before and after physical
interactions by integrating a physics simulator.

2) Our method is applicable to data collected by a robot
interacting with complex objects and tools.

Our code is accessible in the following repository [1].
The rest of the paper is organised as follows: in section II

we present a brief overview over the lines of research that are
related to our work. We continue in section III to describe in
more details how we plan to tackle our research question.
Section IV describes our thorough tests and evaluations,
showcasing the applicability of our solution when the agent is
asked to reason about interaction outcomes from novel tools
and actions. Finally, we conclude the article and propose
promising future research directions in section V.

II. RELATED WORK

A. Understanding Physics from Vision

Accelerated by the growing popularity of deep neural net-
works and their unreasonable performance in many computer
vision tasks, there have been a growing interest in bridging
visual perception to physics [30], [35], [36], [5], [10], [14].
In addition, reconstructing an observed scene in simulation
opens many opportunities for robotic tasks, e.g. [28] used 3D
point clouds to reconstruct a shape in simulation and attempt
several grasps. This work was only concerned with shapes
and neglected other physical properties.

Abelha and Guerin [2] created mesh representations of
objects in Gazebo [23] and by holding the tool in different
ways, determined whether it can be used to achieve a par-
ticular task on a particular object. They used super-quadrics
and super-paraboloids to define a feature vector representing
the geometry of the tool together with how it is being held,
and by augmenting this information with the tools weight,
they managed to generalise the simulation experiments over
various tool without re-running the simulation. From these
experiments, it is not clear how to generalise the learned
knowledge to different tasks and situations.

Battaglia et al. [5] and Chang et al. [10] learn physical
laws and parameters from observing videos. They rely on
an external tracker to detect the objects and measure some
of their states. The interaction space in these works has an
“addition property” where effects of interaction of multi-
ple objects together can be summed. As mentioned in the
introduction, we believe learning the physics together with
the parameters is redundant for artificial agents when more
accurate physics engine are available (in fact, these methods
rely on physics engines to provide supervised training data).

Wu et al. [35] learns physical parameters such as mass,
spring stiffness, etc. from observing videos and assuming
knowledge of underlying physical equations. Their method
achieves remarkable accuracy, but they are limited to the
range of physics equations under consideration. Our frame-
work is more general, and can trivially incorporate the same

inferred parameters, as long as the selected physics engine
allows simulation of these scenarios.

Scene UNderstanding (SUN) RGB-D was used by [30]
to predict direction of motion of objects in simulation if
a 3D force was applied to a specific pixel. Since aligned
Computer-Aided Design (CAD) models do not exist in SUN-
RGB-D, they reconstructed objects in the simulation as
cubes. This simplification in terms of shape, exacerbated by
the fact that they had no ground to real physical interactions,
were among the reasons that the model sometimes made
extraordinary mistakes.

Mar et al. [26] used 2D and 3D features extracted from the
shape of a tool to allow an iCub robot successfully employ
a novel tool to achieve a desired task, however, the robot
needs re-training before it can apply its knowledge for new
actions.

Another line of research that studies the effects of actions
on objects relies on the concept of affordances [16] to learn
a joint distribution over the representations of objects, tools,
actions, and effects. Jamone et al. [20] overviews the appli-
cations and theories of affordances in various fields such as
robotics and neuroscience. For example, [31] uses the knowl-
edge of affordances to generalise the outcome of interaction
experiments from robot hands to unseen tools. Previously, we
proposed a Variational Auto Encoder (VAE) [22] to learn
a joint distribution over features of tools, objects, actions
and effects [13]. Both of the last two works only show
generalisation to new tools and objects, while generalisation
to new actions is out of their scope.

Galileo [36] is maybe the work which is most similar to
our formulation as it also leverages a physics engine. How-
ever, there are several important aspects which differentiate
the present article from this work:
• Galileo [36] is only concerned with simple parametric

shapes whereas we use real scanned models of objects
and reconstructed models of tools.

• We use physical robotic interactions with the environ-
ment, in contrast with [36] where they rely on passively
recorded videos.

• Due to the availability of clean videos, [36] uses a
tracker to obtain an informative time-series of obser-
vation states. However, in robotic scenarios, such a rich
source of information is rarely available, for example as
a result of self occlusion. Thus, we have reformulated
the problem to use the information in snap-shots of
environment, before and after physical interactions.

Since the tracker and code of [36] is not publicly available,
we cannot directly compare our method with Galileo. To
foster research in learning generic physical interactions, the
code of our experiments are publicly available [1].

B. Available Environments and Datasets

1) Interactive Datasets: In general, creating datasets for
interactive tasks is very time-consuming, thus, a possible
approach is to couple the collected data with a physics
engine to create an interactive framework such as Gibson
Environment [37] or AI2-THOR [24]. AI2-THOR is a 3d

modelled synthetic home environment where an agent can
interact with objects and perform actions such as opening
a fridge or putting a towel on a rack. Gibson Environment,
on the other hand, has 211 km2 of 3D scanned real indoor
spaces. Both frameworks focus more on tasks like navigation
and have limitations for our purposes, i.e. AI2-THOR is not
based on real data, and Gibson Environments does not have
movable objects to interact.

2) Photo Realistic Environments: Photo Realistic environ-
ments can be used to enhance the fidelity of rendered images
from existing simulators, to reduce the infamous reality
gap∗. On one hand, there is the Habitat-Sim [32] developed
by Facebook Research with built-in support for several
datasets (including Gibson) which can achieve several frames
per second. Additionally, unrealROX [27] builds on top of
the known game engine: Unreal, using its physics engine
and rendering a robotic platform on a realistic simulation
environment. Both environments can be used to generate
a realistic large-scale datasets, however they have no real
interaction, therefore they cannot be used to infer physical
properties of real objects.

3) Physics 101: The dataset used in [35], [36] is com-
posed of 10,000 video clips containing 101 objects of various
materials and appearances in different physical experimental
settings. Even though these videos can be used to infer
several physical properties, such un-occluded clean views of
the environment over fixed backgrounds are orthogonal to
robotic settings with self occlusions and moving cameras.

4) Affordances dataset: The Affordances dataset [12]
contains information about the effect of performing differ-
ent actions on objects. The data consists of stereo image
pairs corresponding to more than 1320 robot trials. The
trials include 4 actions, push, pull, push-right and push-left
performed by iCub with 3 tools on 11 objects from the Yale-
CMU-Berkeley Object and Model set (YCB) [9] and each
action was repeated at least 10 times.

Since the 3d models of objects in YCB are publicly
available, we decided to use a subset of this dataset to infer
consistent physical parameters and evaluate them against
hold out actions and tools.

III. METHODS

A. Overview of the pipeline

In this work, we are concerned with estimating physical
parameters from physical interactions. However, there are
several challenges to achieve this goal which we will describe
and propose our solutions.

First, the observations may not contain enough information
to recover the true value of a parameter. For example, in our
scenario, the robot pushes the objects on a table with various
tools and measures the displacement of the object as observa-
tion data. Theoretically, a lighter object with a higher friction
coefficient can travel the same distance as a heavier object
with a smaller friction coefficient. Thus, in order to assess

∗the discrepancy between the real and the simulated, computer generated
environments is often referred to as the reality gap [7].

the utility of these parameters, we assume that if a set of
parameters can improve the similarity between simulated and
real displacements over some actions and tools, they should
consistently improve the similarity between simulated and
real effects over unseen tools and actions. This assumption
is validated by our experiments.

Second, the trajectory of an object’s motion in response
to an executed action depends on the exact relative initial
position and speed of execution, which are both unknown
in most realistic robot scenarios. In our case, where objects
move on a table along x and y axis, we assume the effect
of applying a given action with a given tool has a 2D
Gaussian distribution with full co-variance. Thus, our cost
function would be the average of Kullback-Leibler (KL)
divergences of simulated and observed displacements over
different actions and tools(eq. (1)).

Third, to avoid using specific physical relations for each
scenario, we rely on a physics engine to simulate the
environment. However, sampling from a physics simulator
is costly, especially as we need multiple samples for each
experiment and parameter configuration to obtain data points
that are reliable. I.e. we have an optimisation problem where
the cost function is non-differentiable (depending on samples
from a physics simulator) and cost evaluations are time-
consuming. To tackle both of these challenges, we propose
to use Bayesian Optimisation (BO) which does not require
the gradient of the cost function and is known to be sample
efficient.

B. Bayesian Optimisation

Given the 3D object models, for a robot to meaningfully
use a physics simulator to predict the effects of interactions,
it still needs to estimate simulation parameters such that sim-
ulated interactions optimally match the real ones. However,
it is very complicated to analytically estimate the simulation
outcomes, let alone their similarity to real observations (our
measure of similarity is defined in eq. (1)). Thus, instead
of directly optimising this function, we will optimise a
probabilistic surrogate of the similarity.

Formally, the problem is based on finding the optimum
(minimum) of an unknown real valued function f : X → R,
where X ⊂ Rd is a compact space, and d ≥ 1 reflects
the number of the physical parameters to estimate, with a
maximum budget of N evaluations of the target function f .
In our scenario, f(x) is the continuous KL divergence (DKL)
between the real and simulated distributions of effects of
different actions on the object whose parameters are the
be estimated. The distributions of the effects of real ac-
tions are acquired empirically from the dataset of robot
interactions (Affordance dataset) and are kept fixed. One
the other hand, the distributions of the effects of simulated
actions depend on the physical parameters that we want to
optimise such that KL divergence between the real and the
simulated action effects are as similar as possible, so we aim
at minimising

f(x) = DKL(R‖S(x)) =

∫
[log(r)− log(s(x))]rdx

=
1

2

[
log

∣∣ΣS(x)

∣∣
|ΣR|

−m+ tr
{

Σ−1S(x)ΣR

}
+
(
µS(x) − µR

)T
Σ−1S(x)

(
µS(x) − µR

)]
,

(1)

where R and S(x) are multivariate normal distributions with
mean µ and co-variance matrix Σ and m is the number of
components and in this paper we have m = 2 since we define
observations/effects as 2D displacements of the object on a
table. R are the observed effects on the real world, and S(x)
the simulated ones that depend on our parameters x ∈ X .

Figure 2 shows that when the simulated samples (or-
ange dots) are very different from the observed real sam-
ples (blue crosses), the cost function is high (fig. 2a) and
vice versa (fig. 2b).

Our objective is to minimise eq. (1), however, estimating
S over the whole state–space is in-tractable and we can only
evaluate eq. (1) at a number of points.

The BO consists of two stages. First, given a query point
xi and outcome yi = f(xi) + ε, ε representing the measure-
ment noise, we update a probabilistic surrogate model of f ,
a distribution over the family of functions P (f), where the
target function f belongs. Gaussian Process (GP) is a popular
choice for this family which can be built incrementally by
sampling over the input–space [8]. More specifically, given a
dataset Dt = {(x1, y1), · · · , (xt, yt)} of evaluations, where
t is the number of samples, yt is the evaluation of eq. (1) at
xt, and a query point xt+1, the surrogate for the target has
the distribution ŷt+1 ∼ N (µt+1, σ

2
t+1) where:

µt+1 = kTK−1y1:t ; σ2
t+1 = 1− kTK−1k, (2)

and we have:

K =

 k (x1,x1) . . . k (x1,xt)
...

. . .
...

k (xt,x1) . . . k (xt,xt)

 ,
k = [k (xt+1,x1) k (xt+1,x2) · · · k (xt+1,xt)]

(3)

where k : X×X → (0, 1] is a bounded measure of proximity
between two points. One choice of this function is the Matérn
kernel [34, p. 84]:

k (xi,xj) =
21−ν

Γ(ν)

(√
2ν ‖xi − xj‖

l

)ν
Hν

(√
2ν ‖xi − xj‖

l

)
,

such that l is a hyper-parameter, dynamically determined per
feature to maximise the log-likelihood of the observations
Dt, ‖ · ‖ is the L2 norm, Γ(·) is the Gamma function, and
Hν(·) is the Bessel function of order ν. We have kept ν = 2.5
during our experiments without any tuning.

Second, a Bayesian decision process, where an acquisition
function A : X → IR+ uses the information gathered in the
GP to decide on the next best point xt+1 = arg maxxAt(x)

to query/sample. The goal is to guide the search to the
optimum, while balancing the exploration vs. exploitation
trade-off, given the consideration that sampling from eq. (1)
to augment D is time–consuming.

Various acquisition functions are proposed in the litera-
ture [15] and sometimes, it is not clear which one better
suits a particular problem. Thus, we propose to apply the
GP Hedge strategy [19] which uses three different acquisition
functions: Expected Improvement (EI), negative Probability
of Improvement (PI) and Lower Confidence Bound (LCB).
This strategy calculates the next query point according to
each criterion and chooses one to use in the next iteration
according to the softmax(η ·gt) probability, where the hyper-
parameter η is initialised with a positive real value and gt is
the gain updated in each iteration according to the expected
value of the new GP.

These acquisition functions are based on maximising the
expected value of a utility function. One simple utility
function can be defined over X as:

uPI (x) =

{
0 ŷ(x) > ybopt

n

1 ŷ(x) ≤ ybopt
n

, (4)

where ybopt
n = min(y1:t), i.e. the best outcome found until

now (iteration t). Then we have API = Φ(z), Φ(·) corre-
sponds to the Cumulative Density Function (CDF) of the
standard normal distribution (zero mean, unit variance) and
z = (ybopt

n − µ(x))/σ(x) [33]. Also, the pair (µ(x), σ2(x))
are the predictions computed in eq. (2).

The utility function corresponding to EI is uEI(x) =
max(0, ybopt

n − ŷ(x)), resulting in the acquisition function:

AEI(x) = E(ŷ|Dt)[max(0, ybopt
n − ŷ(x))] ={ (

ybopt
n − µ(x)

)
Φ(γ) + σ(x)φ(z) if σ(x) > 0

0 if σ(x) = 0

where φ(·) = N (·; 0, 1).
Finally, regarding LCB, this acquisition function is defined

as ALCB = −µ(x) + βσ(x), where β > 0 is a parameter
to trade-off between exploitation (µ(x)) and exploration
(σ(x)) [17, p. 33].

C. Using simulation to extract physical parameters

Given a set of parameters selected by the Bayesian op-
timiser, we need to evaluate how close does the simulation
outcomes resemble the real experiment. We re-created the
setup of the Affordances dataset [12] in the Bullet physics
engine [11] and assume as known variables: i) the shape and
trajectory of the robot and tool, and ii) the shape and starting
position (but not orientation) of the objects.

Using the object’s 3D shape, we compute its convex hull,
which is necessary for the physics engine to efficiently
calculate stable contact forces between the meshes. From
the obtained convex shape, we assume that the object has
a uniform density and algorithmically compute its inertia
matrix and centre of gravity. The lateral and rolling frictions
however cannot be computed in this way and are found
through the Bayesian optimisation. These friction parameters

(a) KL divergence 122.7 (b) KL divergence 0.96

Fig. 2: Samples explored in the simulation for one object
(yball). The axes are modified to reflect robot’s viewpoint,
e.g. by tapping from left, objects generally move to the right
side. In (a) the orange dots drawn from the simulation show a
very different distribution than the blue crosses resulting in a
large KL divergence. This is due to the un-matched physical
parameters. In (b) we can see the opposite with parameters
found as the optimisation converges.

would require complex experiments for the robot to measure
directly and in addition, even if the parameters can be
accurately measured, it is usual to adjust these parameters
by trial and error in order to stabilise the simulation. For
each combination of parameters (two friction coefficients and
mass, xt, d = 3), object, tool, and action we perform the
action in simulation 500 times by randomising the object’s
initial orientation. This randomisation is necessary because
we do not have access to the ground-truth orientations of the
object, however, this step introduces considerable noise into
our evaluation of eq. (1), justifying the need to perform the
simulation at least 500 times. The outputs of the simulations
are the final (x,y) positions of the object after each repetition.
Finally, the 500 position samples are used to fit a Gaussian
distribution S empirically and the KL divergence to the
observed distribution R is computed. This divergence is
returned as a cost yt to guide the optimiser.

IV. EXPERIMENTS AND RESULTS

In all the following experiments, we have used Bullet
physics engine [11] to simulate interactions with the virtual
world and scikit optimisation package [18].

As explained before, if the robot wants to use the sim-
ulator as a reliable source of information about interaction
outcomes in the real world, it needs to provide adequate
simulation parameters that specify the physical properties of
the target object, the inertia matrix, centre of gravity, friction
coefficients, the weight of the object, etc.

However, our robot has no way of accurately knowing or
directly measuring these parameters so it must estimate them
in an interactive manner by examining the simulation out-
comes through trial and error guided by the KL divergence
cost function described in the previous section. In order to
accurately estimate the KL divergence from the simulated
experiments we repeat the simulation 500 times for each set

(a) YCB yball. (b) YCB ylego. (c) YCB lemon.

Fig. 3: Blue dots are the cost evaluations for each set
of parameters while searching the simulations parameter
space with two actions (push and tap from left) and with
a tool (rake). The parameters are the lateral friction, the
rolling friction, and mass. The orange triangular markers
are the cost when using the corresponding parameters for
an un-experienced action (tap from right with hook). The
parameters that improved the cost in training are connected
with a solid line. Abbreviations in [12].

of (object, parameters, tool and action). The lateral friction is
bounded to values in the range [10−2, 5], the rolling friction
is in the range [10−12, 10−3], and the mass varies between
[0, 200] grams.

To see if the learnt parameters can generalise to new
interactions, namely unseen tool and un-tested action, we
selected three objects from the Affordances dataset [12] and
estimated physical parameters using the interaction data from
two actions (push and tap from left) and a tool (rake). Due to
the exploration–exploitation trade-off of BO, only some of
the parameters during the optimisation course result in im-
proving/lowering the cost. At test time, we only evaluated the
parameters that resulted in an improvement on the train set.
In figure 3, the decreasing costs during optimisation and the
corresponding test-set evaluations are connected with solid
lines. According to our results, improving the performance
in the train set generally improves the performance on the
un-experienced novel actions i.e. when there is a decrease in
the train set, the cost on the test set is also decreased.

V. CONCLUSIONS AND FUTURE WORK

In this document, we have presented a complete frame-
work to infer consistent physical parameters which allow
a robot to predict the effects of applying novel actions to
objects. Our experiments demonstrate that even with very
noisy and sparse observations from real robot interactions,
it is possible to extract physical parameters that can explain
object’s motion in response to unseen interactions.

In our current formulation, we are only interested in
generalising the learnt knowledge to unseen tools and ac-
tions. However, for a new object, there is the need for
new interactions before we can predict the effects of novel
actions, i.e. the knowledge of past interactions with different
objects cannot be leveraged. Learning a representation of an
object related to its intrinsics [4] can allow an agent to use
the interactions with objects that have similar intrinsics to
bootstrap its estimate of physical parameters that determine
the outcome of interactions.

Finally, our proposed solution for estimating physical
parameters is generic, but in this work we have only show
cased it on a single scenario of a robot interacting with
objects on a table using different tools. In the future, we
plan to extend these experiments in more general settings and
incorporate other sources of information during interaction,
e.g. tactile sensors.

ACKNOWLEDGEMENTS

This work is partially supported by the Portuguese
Foundation for Science and Technology (FCT) project
[UID/EEA/50009/2019] and [PD/BD/135115/2017].

REFERENCES

[1] Robotic Interactive Physics Parameters Estimator (RIPPE) code.
https://github.com/carlos-cardoso/RIPPE, 2019.

[2] P. Abelha and F. Guerin. Learning how a tool affords by simulating
3d models from the web. In IEEE–RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4923–4929, 2017.

[3] D. Amso and S. P. Johnson. Learning by selection: Visual search
and object perception in young infants. Developmental psychology,
42(6):1236, 2006.

[4] H. Barrow, J. Tenenbaum, A. Hanson, and E. Riseman. Recovering
intrinsic scene characteristics. Computer Vision Systems, 2:3–26, 1978.

[5] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al. Interaction
networks for learning about objects, relations and physics. In Advances
in Neural Information Processing Systems (NIPS), pages 4502–4510,
2016.

[6] N. E. Berthier, B. I. Bertenthal, J. D. Seaks, M. R. Sylvia, R. L.
Johnson, and R. K. Clifton. Using object knowledge in visual tracking
and reaching. Infancy, 2(2):257–284, 2001.

[7] J. Borrego, R. Figueiredo, A. Dehban, P. Moreno, A. Bernardino,
and J. Santos-Victor. A generic visual perception domain randomi-
sation framework for gazebo. In IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC), pages 237–
242, 2018.

[8] E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

[9] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M.
Dollar. Benchmarking in manipulation research: Using the yale-cmu-
berkeley object and model set. IEEE Robotics Automation Magazine,
22(3):36–52, Sept 2015.

[10] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum. A
compositional object-based approach to learning physical dynamics. In
International Conference on Learning Representations (ICLR), 2017.

[11] E. Coumans. Bullet physics engine. Open Source Software: http:
//bulletphysics.org, 2010.

[12] A. Dehban, L. Jamone, A. R. Kampff, and J. Santos-Victor. A
moderately large size dataset to learn visual affordances of objects
and tools using icub humanoid robot. In ECCV Workshop on Action
and Anticipation for Visual Learning, 2016.

[13] A. Dehban, L. Jamone, A. R. Kampff, and J. Santos-Victor. A deep
probabilistic framework for heterogeneous self-supervised learning of
affordances. In 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids), pages 476–483, 2017.

[14] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learning visual
predictive models of physics for playing billiards. arXiv preprint
arXiv:1511.07404, 2015.

[15] R. Garnett. Bayesian methods in machine learning (course notes
for CSE 515T). URL: https://www.cse.wustl.edu/

˜garnett/cse515t/spring_2019/files/lecture_
notes/12.pdf, March 2019. [Online; accessed June 28, 2019].

[16] J. J. Gibson. The Ecological Approach to Visual Perception. Boston,
MA: Houghton Mifflin, 1979.

[17] J. González. Gaussian process masterclass. URL: http://gpss.
cc/gpmc17/slides/LancasterMasterclass_1.pdf,
February 7 2017. [Online; accessed June 28, 2019].

[18] T. Head, MechCoder, G. Louppe, I. Shcherbatyi, fcharras, Z. Vincius,
cmmalone, C. Schrder, nel215, N. Campos, T. Young, S. Cereda,
T. Fan, rene rex, K. K. Shi, J. Schwabedal, carlosdanielcsantos,
Hvass-Labs, M. Pak, SoManyUsernamesTaken, F. Callaway, L. Estve,
L. Besson, M. Cherti, K. Pfannschmidt, F. Linzberger, C. Cauet,
A. Gut, A. Mueller, and A. Fabisch. scikit-optimize/scikit-optimize:
v0.5.2, Mar. 2018.

[19] M. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation
for bayesian optimization. In Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence, UAI’11, pages
327–336, 2011.

[20] L. Jamone, E. Ugur, A. Cangelosi, L. Fadiga, A. Bernardino, J. Piater,
and J. Santos-Victor. Affordances in psychology, neuroscience and
robotics: a survey. IEEE Transactions on Cognitive and Developmental
Systems, 2016.

[21] S. P. Johnson, D. Amso, and J. A. Slemmer. Development of
object concepts in infancy: Evidence for early learning in an eye-
tracking paradigm. Proceedings of the National Academy of Sciences,
100(18):10568–10573, 2003.

[22] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In
International Conference on Learning Representations (ICLR), 2014.

[23] N. Koenig and A. Howard. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In IEEE–RSJ International
Conference on Intelligent Robots and Systems (IROS), volume 3, pages
2149–2154. IEEE, 2004.

[24] E. Kolve, R. Mottaghi, D. Gordon, Y. Zhu, A. Gupta, and A. Farhadi.
Ai2-thor: An interactive 3d environment for visual ai, 2017.

[25] J. R. Kubricht, K. J. Holyoak, and H. Lu. Intuitive physics: Current
research and controversies. Trends in cognitive sciences, 21(10):749–
759, 2017.

[26] T. Mar, L. Natale, and V. Tikhanoff. A framework for fast, autonomous
and reliable tool incorporation on icub. Frontiers in Robotics and AI,
5:98, 2018.

[27] P. Martinez-Gonzalez, S. Oprea, A. Garcia-Garcia, A. Jover-Alvarez,
S. Orts-Escolano, and J. G. Rodrı́guez. Unrealrox: An extremely
photorealistic virtual reality environment for robotics simulations and
synthetic data generation. arXiv preprint arXiv:, abs/1810.06936,
2018.

[28] Z.-C. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and
M. Beetz. General 3d modelling of novel objects from a single view. In
IEEE–RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3700–3705. IEEE, 2010.

[29] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von
Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, and
L. Montesano. The iCub humanoid robot: An open-systems platform
for research in cognitive development. Neural Networks, 23(8):1125–
1134, 2010.

[30] R. Mottaghi, M. Rastegari, A. Gupta, and A. Farhadi. what happens
if... learning to predict the effect of forces in images. In European
Conference on Computer Vision (ECCV), pages 269–285. Springer,
2016.

[31] G. Saponaro, P. Vicente, A. Dehban, L. Jamone, A. Bernardino, and
J. Santos-Victor. Learning at the ends: From hand to tool affordances
in humanoid robots. In 2017 Joint IEEE International Conference on
Development and Learning and Epigenetic Robotics (ICDL-EpiRob),
pages 331–337, Sep. 2017.

[32] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra. Habitat:
A platform for embodied ai research. arXiv preprint arXiv:, 2019.

[33] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in Neural
Information Processing Systems (NIPS), pages 2951–2959, 2012.

[34] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine
learning, volume 2. MIT Press Cambridge, MA, 2006.

[35] J. Wu, J. J. Lim, H. Zhang, J. B. Tenenbaum, and W. T. Freeman.
Physics 101: Learning physical object properties from unlabeled
videos. In British Machine Vision Conference (BMVC), volume 2,
page 7, 2016.

[36] J. Wu, I. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum. Galileo:
Perceiving physical object properties by integrating a physics engine
with deep learning. In Advances in Neural Information Processing
Systems (NIPS), pages 127–135, 2015.

[37] F. Xia, A. R. Zamir, Z.-Y. He, A. Sax, J. Malik, and S. Savarese.
Gibson env: real-world perception for embodied agents. In Computer
Vision and Pattern Recognition (CVPR), 2018 IEEE Conference on.
IEEE, 2018.

https://github.com/carlos-cardoso/RIPPE
http://bulletphysics.org
http://bulletphysics.org
https://www.cse.wustl.edu/~garnett/cse515t/spring_2019/files/lecture_notes/12.pdf
https://www.cse.wustl.edu/~garnett/cse515t/spring_2019/files/lecture_notes/12.pdf
https://www.cse.wustl.edu/~garnett/cse515t/spring_2019/files/lecture_notes/12.pdf
http://gpss.cc/gpmc17/slides/LancasterMasterclass_1.pdf
http://gpss.cc/gpmc17/slides/LancasterMasterclass_1.pdf

	Introduction
	Related Work
	Understanding Physics from Vision
	Available Environments and Datasets
	Interactive Datasets
	Photo Realistic Environments
	Physics 101
	Affordances dataset

	Methods
	Overview of the pipeline
	Bayesian Optimisation
	Using simulation to extract physical parameters

	Experiments and Results
	Conclusions and Future Work
	References

